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Abstract 
The incorporation of data analytics in the healthcare industry has made significant progress, driven by the demand 
for efficient and effective big data analytics solutions. Knowledge graphs (KGs) have proven utility in this arena and 
are rooted in a number of healthcare applications to furnish better data representation and knowledge inference. 
However, in conjunction with a lack of a representative KG construction taxonomy, several existing approaches in 
this designated domain are inadequate and inferior. This paper is the first to provide a comprehensive taxonomy 
and a bird's eye view of healthcare KG construction. Additionally, a thorough examination of the current state-of-
the-art techniques drawn from academic works relevant to various healthcare contexts is carried out. These 
techniques are critically evaluated in terms of methods used for knowledge extraction, types of the knowledge base 
and sources, and the incorporated evaluation protocols. Finally, several research findings and existing issues in the 
literature are reported and discussed, opening horizons for future research in this vibrant area. 

Keywords: Knowledge Graph; Knowledge Graph Construction; Healthcare Knowledge Graph; drugs; diseases; 
biomedicine; survey.  

1. Introduction  
The emergence of big data has opened up new possibilities and ushered in significant changes in various disciplines. 
Healthcare industry is one of such areas in which advanced and sophisticated data analysis is required to 
accommodate and properly understand the growing volume of healthcare data, thereby optimising healthcare 
delivery. However, healthcare data is still regarded as a by-product [1], thus massive healthcare data sources remain 
neglected and underutilised [1, 2]. Attaining meaningful and actionable knowledge from such data sources could 
positively affect patient care and enable more accurate diagnosis, prevention of disease, personalised treatment, 
and better decision-making. Primary obstacles for analysts include heterogeneity of healthcare data sources and 
formats, lexical disparities, and the lack of comprehensive and integrated healthcare knowledge libraries [3].  
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Knowledge Graphs (KGs) have evolved into a new type of knowledge representation that serves as the cornerstone 
for a variety of applications ranging from general to specialised industrial use [4, 5]. The fundamentally abstract 
structure of this technology, which efficiently promotes domain conceptualisation and data management, is one of 
the key factors driving the growing interest in it. The KG, in particular, displays an integrated collection of real-world 
entities linked by semantically associated relationships. In this case, data annotation put the available semantic 
content in a machine-readable format, minimising ambiguity and generating relevant information particular to the 
domain of an application. KGs can furnish an efficient and effective technical solution to conceptualise a healthcare 
domain and thus be used for several downstream tasks. Therefore, incorporating this technology into healthcare 
data analytics has emerged as a solution capable to mitigate such issues as data island's complexity, heterogeneity, 
and sheer size. However, constructing healthcare KGs with unproven methodologies raises concerns regarding their 
quality and robustness and whether sufficient assessment measures have been applied, especially for KGs obtained 
from unstructured data sources (such as scientific medical literature or social media). Furthermore, the dynamic 
nature of healthcare data is strongly linked to context, and numerous facts that characterise clinical and medical 
entities may vary or change over time. Disregarding the flexibility of knowledge lowers the quality and accuracy of 
facts embedded in the KGs, thereby leading to substandard decision-making based only on such data sources. As 
a result, it is critical to perform a detailed analysis of current state-of-the-art methodologies for healthcare KG 
creation in order to identify such difficulties and open new avenues for pursuing potential solutions. 

This survey offers a bird's eye view of the current construction techniques and possible applications of KG 
technology in the healthcare domain. First, a taxonomy of healthcare KG construction is formulated to illustrate the 
scope of usage of KG in healthcare, levels of knowledge extraction, different types of knowledge bases and sources, 
and existing evaluation procedures. Next, we examined significant state-of-the-art KG generation approaches 
relevant for critical healthcare applications, including (i) drug discovery, repurposing and adverse reactions; (ii) 
diseases and disorders; (iii) biomedicine; and (iv) other miscellaneous healthcare applications. These approaches are 
scrutinized, with a summary created for each domain demonstrating specific KG functionalities, the incorporated 
knowledge extraction techniques (at both entity and relation levels), type of the knowledge base, the resources 
needed to construct it, relevant KG statistics, the measurements used to assess the KG construction methodology, 
and the limitations and shortcomings of each approach. This paper is distinguished from similar works that tend to 
focus too narrowly on specific healthcare subdomains [6, 7] or generic applications of KG in healthcare [8]. In 
particular, the following are the key contributions of this paper:  

• To the best of our knowledge, this survey is the first to provide a bird's eye view of healthcare KG 
construction.  

• A new representative taxonomy is outlined to facilitate easier KG construction in the healthcare domain.  
• An in-depth analysis of state-of-the-art KG construction methodologies is provided, and their main 

strengths and weaknesses are discussed. 
• A summary of the research findings and remaining issues is presented, paving the way for future research. 

In Section 2, taxonomy of KG construction in healthcare is presented and analyzed from multiple perspectives. 
Several KG construction approaches relevant for various healthcare domains are reported in Section 4. Section 5 
summarizes the major flows of the existing techniques, and the observed research gaps, and offers suggestions to 
overcome them. 
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2. Survey Methodology  
This paper aims to review the recent KG construction approaches for healthcare applications. Thus, we attempt to 
cover all papers that describe mechanisms for KG construction to benefit the healthcare domain. We focus on 
articles that were published in the past five years (2018-2022). PRISMA (Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses) framework [9] is followed to guide this systematic review. As demonstrated in Figure 
1, around 560 articles were selected in the first stage from various databases including Elsevier, ACM Digital Library, 
Multidisciplinary Digital Publishing Institute (MDPI), IEEE Xplore digital library, and Google Scholar. The collected 
articles were all in English and were retrieved using the following keywords used in this query: "Knowledge Graph 
Construction", "Healthcare", "biomedicine", "medicine", "drug discovery", "drug repurposing", "adverse drug 
reaction", "disease(s)", "disorder", etc. An additional 83 articles were identified and added to the corpus by reviewing 
the citations map of the tentative collected set of papers. The first stage resulted in a total of 643 records. Another 
round of inspection was carried out in the screening stage to eliminate any redundant or irrelevant articles. This 
was accomplished by examining both the title and the abstract of each paper. In this way, 440 records were excluded 
in the screening stage as they did not meet the inclusion criteria. In particular, many of the articles discussed 
approaches for KG embeddings that are applied to existing KGs, thus no construction of new healthcare KGs was 
proposed. Another array of articles reported KG construction for other domains of knowledge yet indicated 
"healthcare" as an example of the popularity of KGs to tackle industrial applications. The eligibility phase was then 
carried out by examining the full text of papers and eliminating the irrelevant ones (102 records). In the final stage, 
a total of 101 papers were deemed to be qualified to be included in this review.  

 
Figure 1: The article selection strategy for the literature review (PRISMA model). 

Figure 2 presents the volume distribution of the selected articles over the past years, clearly showing the growing 
interest in this technology. 
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Figure 2: #Publications about KG construction for healthcare in the past years. 

3. Groundworks  
3.1 An overview of KG 
A KG is a multidimensional graph that contains entities (nodes) and relations (edges) that describe the interrelation 
of one or more domains. Hence, the KG displays a unified collection of real-world objects connected by semantically 
relevant relationships. The concept of semantic interlinking is framed by Semantic Web technology whereby data 
can be annotated in a machine-interpretable format. This is commonly accomplished through the use of ontologies, 
which define concepts (representing a collection of entities), the relations between entities, and semantic rules, 
thereby giving a formal and explicit representation of that domain's knowledge [10, 11]. These efforts are fostered 
by using KGs, an abstract data model that captures a single standard representation of semantically related data 
(i.e., a graph).  

A KG is a directed graph (𝐺𝐺), where 𝐺𝐺 = (𝑉𝑉,𝐸𝐸). This notation depicts the relationship between entities, as well as 
the interactions between these entities, in terms of graph vertices (𝑉𝑉) and edges (𝐸𝐸) connecting these vertices. The 
edges reflect relationships between real-world things whereas the vertices represent real-world entities. The edges 
of the graph connect the vertices/entities/nodes, and facts can be represented as an RDF1 triple (head, relation, tail), 
which is also notated as <h,r,t>. As a result, a fact can be inferred by the relationship that connects two interrelated 
entities. Figure 3 demonstrates a sample KG demonstrating the semantic representation of entities captured from 
different interrelated healthcare domains, namely Disease, Gene, Drug, and Compound. The figure shows how a KG 
can be used to expand one domain by semantically interlinking it with another domain. Also, various facts can be 
inferred from the abstract structure of the KG. For example, the fact "a Disease is associated with a Gene" represents 
an abstract fact that comprises two abstract concepts (i.e. Disease and Gene), and the relation "is associated with" 
builds the triple <" Disease", "associatedWith"," Gene">. These abstract concepts can be then replaced with real-life 
entities to provide a specific domain representation. For example, the triple <" Sjogren's Syndrome", 

 
1 https://www.w3.org/TR/rdf11-concepts/  
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"associatedWith", "HLA-DR3"> indicates a fact about the Sjogren's Syndrome disorder which can be associated with 
HLA genes, namely HLA-DR3 [12]. 

 
Figure 3: A sample healthcare KG. 

The sample KG depicted in Figure 3 can be further expanded and linked with other datasets and vocabularies to 
extend the understanding of these real-world entities which belong to one or different domains. 

3.2 Generic and Domain Specific KG 
There are two types of KGs: generic and domain-specific KGs. Since the Semantic Web's inception, generic KGs (also 
called domain-independent, cross-domain, or open-world) have been constantly expanded. As a natural 
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representation of interconnected entities, generic KGs have been related to linked data [13]. Cyc2, BabelNet3, NELL4, 
CliGraph5 , YAGO6, and DBPedia7 knowledge bases are examples of generic KGs, and the number of such KGs is 
rising rapidly. Domain-specific KGs are defined as "an explicit conceptualisation to a high-level subject-matter 
domain and its specific subdomains represented in terms of semantically interrelated entities and relations" [14]. 
These KGs are important to conceptualise specific domains, such as health, sports, social science, engineering, travel, 
etc. Examples of domain KGs include: HKGB [15], K12EduKG [16], SoftwareKG [17], ClaimsKG [18].  

4. A taxonomy of healthcare KG construction  
To better understand the overall paradigm of healthcare KG construction, we design a taxonomy that illustrates key 
activities and aspects of this process. Figure 4 shows the schematic representation of the taxonomy that was 
designed after careful examination of all significant state-of-the-art KG creation approaches relevant to critical 
healthcare applications, including (i) drug discovery, repurposing and adverse reaction; (ii) diseases and disorders; 
(iii) biomedicine; and (iv) other miscellaneous healthcare applications. This taxonomy aims to ensure that the 
process of constructing a typical KG in healthcare must demonstrate the intended primary use of KG, levels of 
knowledge extraction (entity level and relation level),  different types of knowledge bases and sources, and 
evaluation metrics and criteria. The following sections provide detailed descriptions of each of the aforementioned 
elements.  

4.1 Levels of knowledge extraction 
The mechanism used to build a typical healthcare KG includes extracting entities and relations that can be captured 
from various heterogeneous healthcare data sources using a range of extraction methods. This section discusses 
the knowledge extraction procedures at both the entity level and the relation level.  

4.1.1 Entity-level 
Entities in healthcare KGs represent the nodes of the graph, which correspond to real-world entities such as drugs, 
diseases, diagnoses, patients, hospitals, events, etc. There are three  main approaches used for entity extraction [19, 
20]; (i) Named Entity Recognition (NER); (ii) Named Entity Disambiguation (NED); and (iii) Named Entity Linking 
(NEL). NER techniques aim to analyse textual data, thereby identifying factual names of various real-world objects. 
For example, the "Pfizer" entity in the following text snippet "Clinical trials showed that Pfizer is effective." refers to 
the name of BioNTech vaccine that protects against COVID-19. The techniques used in NER can be classified into 
(a) knowledge-based techniques that rely on domain-specific knowledge and (b) advanced machine learning 
techniques that benefit from annotated data (in case of supervised learning), or partially annotated data (in case of 
semi-supervised learning), or derive knowledge from the structural or distributed nature of data (in case of 
unsupervised learning) to carry out an entity recognition task. Examples of ML-based techniques include Hidden 
Markov Models (HMM), Support Vector Machines (SVM), Conditional Random Fields (CRF) and variations, and 
Decision Trees [21-23]. 

 
2 https://www.cyc.com/  
3 https://babelnet.org/ 
4 http://rtw.ml.cmu.edu/rtw/kbbrowser/   
5 http://caligraph.org/ontology/Scientist  
6 http://www.foaf-project.org/ 
7 https://wiki.dbpedia.org/ 

https://www.cyc.com/
https://babelnet.org/
http://rtw.ml.cmu.edu/rtw/kbbrowser/
http://caligraph.org/ontology/Scientist
http://www.foaf-project.org/
https://wiki.dbpedia.org/
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Figure 4: A taxonomy of healthcare KG construction.  
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Although NER techniques can identify potential entities, some of these units can be difficult to link to their 
corresponding entities that are located in the same or different KGs. For example, the expression "Pink eye" captured 
from any textual snippet could possibly refer to conjunctivitis and thus should be linked to a corresponding entity 
in a medical KG; or could simply refer to a cosmetic makeup term (eyeshadow) that relates to a completely different 
domain. The spectrum of currently used techniques in named entity disambiguation spans from rule-based 
approaches to advanced machine learning approaches, serving to clarify the results of NER and separate similar 
cases. Finally, NEL aims to link an identified entity (using a NER method) with an unambiguous manifestation (using 
a NED method) of the same entity captured from textual content, and frame it within a fixed context by linking it to 
a KG. As a result, NEL is the process of locating an entity mentioned in an (unstructured) text and linking it to a 
(structured) KG entry. The reader can refer to [19, 20] for detailed discussions on entity extraction mechanisms and 
technical issues related to their practical implementation.  

4.1.2 Relation-level  
A relation between two entities conveys the semantic relationship between these entities. Extracting the relations 
between entities in KG requires such links to be identified, thus establishing a tuple that connects two potential 
entities. The aim of relation extraction is to figure out in which ways the identified and disambiguated entities are 
related semantically. This operation can be performed using either a local or a global strategy. The former denotes 
a mention-level relationship that is frequently inferred from short textual contents, while the latter seeks to infer 
relationships that span multiple knowledge bases and may involve numerous local relationships. Further 
information on relation extraction methods can be found in the related literature [24, 25]. 

4.2 Types of knowledge base 
The course of construction of a healthcare KG is dependent on whether a predetermined ontology schema is used 
(schema-based), no predefined schema is used (schema-free) [26], or a combination of schema-based and schema-
free techniques is employed. Based on the selection of data sources and ontology [27, 28], the first class of methods 
(schema-based) can be divided into two groups: (i) the bottom-up methods, in which the structural framework of 
an ontology is used as a foundation to construct the KG (e.g. Wikipedia is established by using the predefined 
ontology model, i.e. DBpedia [29]); and (ii) the top-down technique (e.g., YAGO) [30]), in which the ontology schema 
is inferred from the underlying structured data, or the taxonomies (hierarchy) which are developed based on 
information on the Web [31]. Schema-free methods are generally based on open information extraction strategies 
that rely on the open access to information on the Internet; as a result, data is gathered with diverse knowledge 
extraction techniques without particular concern for fitting the data into a unifying ontology design (e.g. OpenIE 
[32]). Hybrid knowledge-based approaches: are flexible strategies for obtaining knowledge that partially rely on a 
specified ontology but integrate new information in a flexible way (e.g. KnowledgeVault [27], NELL [33]). 

4.3 Types of knowledge resources 
Building a consolidated healthcare KGs requires extracting and integrating data from a variety of sources. The 
integration step is necessary in order to harmonise the data and provide a consistent big-picture view. There are 
three types of healthcare knowledge resources; (i) unstructured data sources (such as EMRs, medical literature, 
discharge summaries, and radiology reports); (ii) semi-structured or tree-structured data sources like JSONs and 
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XMLs (e.g., Bio2RDF8); and (iii) structured databases that organize information in tabular formats such as relational 
medical databases (e.g., MEDLINE9).  

4.4 KG evaluation metrics 
The sudden growth of demand for healthcare KGs and the corresponding rush to produce them raises concerns 
about the quality of embedded information (i.e., entities and relations) and whether these elements accurately 
transmit the intended real-world facts behind the numbers. Assessing the completeness and veracity of information 
contained within a KG is the key to determining its "fitness of purpose" [34] for various downstream applications, 
as well as ascertaining data quality [35-38].  

The lack of a complete and accurate KG in a particular domain makes the evaluation process difficult. This is due to 
the fact that compiling all factual data regarding a particular topic is a massive undertaking that may never be 
actually finished. As a result, several attempts have been made to augment and dynamically updateknowledge 
graphs with new facts derived from new entities and/or relations, usually referred to as KG 
Augmentation/Completion approaches. These efforts are subjected to correctness and completeness evaluation 
procedures to assure data quality. The evaluation can be performed by tracking classification accuracy and ranking 
metrics such as Hits@N and Mean Reciprocal Rank (MRR), Accuracy, Precision, Recall, and F-score [39, 40], based 
on a comparison between data in the KG and ground truth. These metrics are among a number of tools that can 
be used to assess the KG's construction quality and factuality of the described entities and relationships. Case 
studies and domain experts have also been occasionally used in the evaluation of KG structures [41, 42]. 

5. State of the art review  
Recently, the Healthcare sector has gained much public attention, particularly with the coronavirus (COVID-19) 
pandemic that started in 2019 and continues to rattle the world. Therefore, there is a notable consensus between 
industry and academia that it is critical to consolidate the efforts of all stakeholders to overcome the challenges of 
this vital sector [43]. KGs offer the technical means to the healthcare sector to derive meaningful insights from 
voluminous and heterogeneous healthcare data contained in clinical and academic sources [44, 45]. The examined 
papers relevant to healthcare are classified into four different categories: (1) Drugs: This category comprises studies 
that incorporate KG technology for drug discovery, drug repurposing, and adverse drug reactions. (2) Diseases and 
disorders: Which includes studies that benefited from KG technology to conceptualise various diseases and 
conditions, such as stroke, subarachnoid haemorrhage, hepatitis, etc. Also, it includes papers about mental illnesses, 
such as depression, anxiety, autism, etc. (3) Biomedical studies: These include the fields of biomedicine, 
microbiology, etc. (4) Miscellaneous healthcare: These are works that span different categories, or those that 
incorporate KGs to model a specific healthcare solution.  

5.1 Drug discovery, repurposing and adverse reaction 
Drug discovery: KGs are receiving a lot of attention from researchers who are involved in the drug development 
studies. The necessity to construct specific KG for the drug sector has several key motivating factors [46]; prescribing 
a particular drug to treat a certain disease might involve some non-medical factors including the demographics, 

 
8 https://bio2rdf.org/ 
9 https://www.nlm.nih.gov/medline/medline_overview.html 
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insurance policy, drug availability, etc. Further, in some instances, healthcare professionals who are not qualified to 
prescribe drugs, might act upon an emergency, thereby initiating a treatment that in a normal situation has to be 
initiated by a specialist doctor. Such complications illustrate the need for an intelligent platform that can actively 
guide the search for the optimal drug to prescribe. In this context, Mann et al. [46] attempted to create such a 
platform that can assist in finding a valid treatment considering the known symptoms or identified disease. In this 
study, the authors integrated existing medical knowledge resources, thereby building a KG to benefit the entire 
domain. In the same line of research, Che et al. [47] proposed a method to integrate six knowledge bases into one 
coherent KG. The resulting KG is then embedded into Graph Convolutional Network with an Attention mechanism 
for Drug–Disease Interaction (DDI), which is used to predict and discover potential drugs capable of effectively 
treating COVID-19. The prediction of Drug-Target Interaction and Drug-Drug Interaction are important aspects of 
the development of new drugs. In another interesting study, Zhang et al. [48] constructed two designated KGs 
describing drugs captured from a biological dataset, namely Bio2RDF10. This is followed by developing a learning 
model based on graph representation (MHRW2Vec), whose output was fed to a neural network model (TextCNN-
BiLSTM Attention Network (TBAN)). The ultimate objective was to predict potential interactions of various COVID-
19 drugs. Ye et al. [49] developed KGE_NFM, an integrated framework comprising both a KG and a recommender 
system to predict DDI. The components of the KG were embedded in a low-dimensional space, after which a neural 
factorization machine was tasked to build the recommender system for drug target discovery. Drug discovery 
incorporating KG technology was also discussed in [50-53].  

Drug repurposing: Drug repurposing (a.k.a. reprofiling, redirecting, rediscovery, or repositioning) is an interesting 
domain that has come into focus recently. It aims to reuse existing drugs to treat emerging diseases (such as COVID-
19) thereby reducing both drug development timelines and the associated costs [54]. Therefore, various studies 
attempted to provide intelligent solutions for the challenges inherent in drug repurposing. Regarding the use of 
KGs, there is a direction of research aimed at constructing KGs that can be used for drug repurposing. BenevolentAI's 
proprietary KG [55] is amongst the most successful approaches in this research line. The BenevolentAI KG integrates 
an assortment of medical data obtained from structured and unstructured scientific repositories (including 
literature). It is queried by various algorithms to identify new relationships between entries, thereby suggesting new 
ways of treating diseases. In the same context, Wang et al., [56] proposed a framework called COVID-KG which 
aimed to construct a KG from multimodal data found in scientific literature into one actionable KG that can be used 
for drug repurposing. The proposed KG is built on an ontology of 77 entity subtypes and 58 event subtypes, as 
defined in the Comparative Toxicogenomic Database (CTD) (Davis et al., 2016), and entities are linked using Medical 
Subject Headings (MeSH) framework. [57] also proposed a multimodal drug repurposing KG for COVID-19 that was 
built with data harvested from scientific literature, and aimed to provide an overview of pathophysiology related to 
COVID-19. The construction of this graph was carried out manually using Biological Expression Language, and 
evaluated based on multiple case studies. Drug repurposing is further discussed in [58-63]. 

Adverse drug reactions (ADRs): ADRs refer to undesired reactions that occur after the use of a certain medical 
product [64]. ADRs carry significant risks to both patients and the hospital system [65], thus serious attention is 
required to tackle this issue and develop optimal technological solutions to mitigate it. The sophisticated structure 
of KGs presents an opportunity to define this problem conceptually and provides new ways to predict potential 

 
10 https://bio2rdf.org/  
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ADRs. Many studies were conducted in this direction, notably Bean et al. [66] benefited from access to two drug 
resources (namely DrugBank11 and SIDER12) to build a KG that can predict ADRs. This KG contains four types of 
nodes and three types of edges, and is consolidated with a prediction model (similar to linear regression). Authors 
of [67] introduced a KG to represent drugs and ADRs, with data embedded using the Word2Vec model. On top of 
this model, logistic regression was used to predict whether a given drug causes any ADRs. Tumor-Biomarker 
Knowledge Graph (TBKM) [68] is another attempt to design a KG with four node classes (namely Tumor, Biomarker, 
Drug, and ADR) based on data from scientific biomedical literature. The aim of the KG is to discover ADRs of 
antitumor drugs as well as provide explanations why they occur. Predicting and discovering ADRs have been further 
reported in [69-74]. Zhao et al. [75] designed their drug action mechanism KG after extracting information from 
770,000 abstracts of medical papers. Despite the poor approach used to extract entities and their relationships, the 
paper managed to cover a large number of drugs and mechanisms of action. Table 1 illustrates a summary of 
currently proposed KG construction approaches for drug discovery, drug repurposing, and adverse drug reaction. 

Table 1: A Summary of KG construction approaches for drug discovery, drug repurposing, and adverse drug reaction.  

Ref. KG Specific 
Functionality 

Knowledge Extraction 
Techniques 

Type of 
KB 

 

KG Resource(s) KG Stats 
 

Evaluation 
Measure(s) 

Shortcoming(s) 

Entity-
level 

Relation-
Level 

[46] Drug discovery  Manual and fuzzy matching  Schema-
based  

Wikidata, 
DrugBank13, WedMD, 
and GoodRx 

N/A R, P • Lack of statistics on the 
resultant KG.  
• Limited discussion on the 
Ontology design  
• The evaluation of the 
proposed model emphasized on 
KG embedding rather than the 
resultant integrated KG. 

[47] Drug discovery for 
COVID-19 

Manual construction based 
on six KGs obtained from 
the literature 

Schema-
based 

Literature on 
COVID-19 

#n: 100,00 
#e: 670,000 
 

AUC, and AUPRC • Insufficient discussion on the 
mechanism followed to 
integrate the incorporated KGs, 
• The evaluation of Att-GCN-
DDI is limited and not detailed.  

[48] Drug discovery Manual extraction based on 
Bio2RDF KG 

Hybrid Bio2RDF14 #n: 2,947,140 
#e: 
10,131,654 

AUC, AUPR, F1 • Inadequate discussion on the 
construction of drug KG.  

[55] Drug repurposing Algorithms developed at 
BenevolentAI15 and part of 
their IP 

Hybrid Structured and 
unstructured 
resourced including 
Literature on 
COVID-19 

#n: millions 
#e: hundreds 
of millions 
 

Case study • There is no detailed 
discussion on the mechanism 
followed to construct 
BenevolentAI graph.  
• The evaluation was merely 
measured by case study. 

[56] Drug repurposing Coarse- and 
fine-
grained 

Manually 
based on CTD 
and MeSH 

Schema-
based  

Multimodal scientific 
literature (CTD16) 

#n: 67,217 
#e: 
77,844,574 

Case study on 
Drug 
Repurposing 

• Although the proposed 
framework demonstrated 
success in tackling the quantity 
issue of relevant KG resources, 

 
11 https://go.drugbank.com/ 
12 http://sideeffects.embl.de/ 
13 https://go.drugbank.com/ 
14 https://bio2rdf.org/  
15 https://www.benevolent.com/ 
16 http://ctdbase.org/downloads/ 
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entity 
extraction 

Report 
Generation 

the quality issue was not 
properly evaluated to 
demonstrate its effectiveness.  
• Observed bias in training and 
development data, source, and 
test queries.  

[57] Drug repurposing Manually encoded  in 
Biological Expression 
Language 

Schema-
free 

PubMed, LitCovid17, 
EuropePMC, etc. 

#n: 4,016 
#e: 10,232 

Case study (Gene 
Expression 
Analysis) 

• The mechanism followed to 
construct the KG (manual-
based) is poor in terms of 
scalability.  

[58] Drug repurposing Cross-referencing  Schema-
based 

PharmGKB, TTD, 
KEGG DRUG, 
DrugBank, SIDER18, 
and DID 

N/A Case study 
(Finding drug–
disease pairs) 

• The proposed data model that 
was used for data integration 
can be improved by using formal 
domain ontology toward better 
conceptualizing the domain.  

[67] Prediction 
of adverse drug 
reactions 

Direct construction from 
structural databases  

Schema-
free  

DrugBank database 
and SIDER database 

#n: 12,473 
#e:154,239 

P, R, F1, AUC, and 
a case study on 
Drug-induced 
liver injury 

• The KG skips information of 
drugs and protein target, 
• The scope of information 
perceived by entities can be 
enlarged by using longer path in 
the KG as the input of Word2Vec 
model. 

[66] Prediction 
of adverse drug 
reactions 

Direct construction from 
structural databases 

Schema-
free 

DrugBank, SIDER #n: 5,828 
#e: 70,382 

AUC and case 
study(Validation 
in EHRs and 
Eudravigilance) 

• No clear discussion on KG 
construction approach, 
• Insufficient discussion on the 
methodology followed in the ML 
benchmark comparison. 

[68] Discovery 
of adverse drug 
reactions 

cTAKES19 naive Bayesian 
model 

Schema-
based 

MEDLINE #n: 9,699 
#e: 139,254 

co-occurrence 
analysis and 
Case study 
(Osimertinib) 

• The computed drug-
biomarker groupings cannot 
differentiate between a drug-
treatment relationship,  

• The study lacks the attention 
to drug-drug interaction, 

• lack of rationale on using the 
entity extraction method 

[75] Drug action Automatically using rule-
based approach 

Schema-
free 

Medical papers #n: 40,963 
#e: 57,865 

R, and accuracy • Lack of verification to the 
textual prio KG construction. 
• Limited comparison with 
currently exiting similar KGs. 

5.2 Diseases and disorders 
Topographic and anatomic: KGs have accelerated the pace of scientific discovery that aims to better understand 
diseases affecting the human body. For example, Zhang et al. [15] developed Health Knowledge Graph Builder 
(HKGB), which is a framework that can be used to construct a Health KG (HuadingKG) from multiple sources (namely 
EMRs, medical standards, and expert knowledge) to be used in the cardiovascular domain. To conceptualise 
subarachnoid haemorrhage stroke, the authors of [45] developed a comprehensive framework that allowed them 
to construct a KG from heterogeneous data automatically. In particular, the authors incorporated semantic analysis 
for entity and relation extraction, and implemented a knowledge prediction model based on the association rule 
and ensemble machine learning. KGHC [76] is a KG designed specifically for Hepatocellular Carcinoma. It brings 
together and connects entities captured from 5 different unstructured and structured data sources and extracted 

 
17 https://www.ncbi.nlm.nih.gov/research/coronavirus/ 
18 http://sideeffects.embl.de/ 
19 https://ctakes.apache.org/ 
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using information extraction techniques such as BioIE and SemRep. Yin et al. [77] constructed a KG for diagnosing 
and treating viral hepatitis B by adopting a top-down approach where a domain ontology was used to build the 
KG. The authors did not provide adequate details on the mechanism utilised to construct the KG or the evaluation 
metrics. Yet, they claimed that the designed KG benefits intelligent recommender systems that can be used to 
diagnose and treat viral hepatitis B. Another research direction identified the role of genes in human disease [78]. 
The authors built a convolutional neural network-based model on top of a biological KG to classify the genes highly 
correlated with cancer. While the construction of the KG itself was not adequately validated, the resultant 
embedding model was evaluated on downstream tasks. An attempt at preventing Myopia using KG technology was 
described in [79]. The authors developed a KG from various Chinese websites to provide intelligent Q&A services 
to users interested in Myopia prevention. However, the finalised KG lacks multimodal data that can be captured 
from medical databases and domain-relevant question answering systems.  Conceptualising Stroke and its causes 
and effects is an extensively covered subject in the literature. For example, Yang et al. [80] constructed an integrated 
KG, named StrokeKG, that portrays various stroke-relevant relationships inferred from various medical datasets. 
Designing KGs to benefit the victims of stroke was also examined in [81, 82]. COVID19-related disease discovery 
using KGs was reported by Huang et al. [83]. Relying on a pipeline approach, the authors surveyed from relevant 
scientific papers related to COVID-19 and used the collected data to construct a KG that can identify diseases and 
drugs associated with COVID-19. The accuracy of the extracted knowledge was then verified using the time-slicing 
method. The use of KGs in the healthcare domain was discussed with a focus on disease identification and prediction 
in [84-87], detecting the association between miRNA and disease in [88], chronic disease management in [89], and 
syndromes diagnosis in [90]. 

Mental disorders: Yuan et al. [91] constructed a KG with minimal supervision to frame autism spectrum disorder 
diseases, using the articles obtained from the PubMed dataset. Entities were extracted using MinHash lookup/ 
UMLS [92] and formed into pairs which were then clustered using kmeans++ based on similarity between entities. 
Constructing KGs that can describe depression was undertaken by Huang et al. [93]. In particular, they attempted 
to generate a sub-graph that describes depression disorder, obtained by parsing data from a variety of major 
knowledge sources such as PubMed, Medical Guidelines, DrugBank, Unified Medical Language System (UMLS) etc. 
In the same line if research, Li et al. [94] proposed a UMLS-based semantic prediction program, known as SemRep, 
as well as SemMedDB to construct a KG for describing depression by using a bottom-up approach. Depression and 
its association with metabolism is also discussed in [95]. The authors developed MDepressionKG KG that integrates 
data about human microbial metabolism network, human diseases, microbes, etc., to offer  semantic-based rational 
reasoning and establishing probable relations between depression and comorbid diseases. Although the authors 
furnish a useful online website to demonstrate utility of MDepressionKG, the knowledge inference mechanism is 
ineffective due to the incorporated traditional rules of logic. Furthermore, automatic extraction methods are 
required to enrich the functional diversity of the proposed depression KG. The conceptualisation of various mental 
disorders through graphs was also presented in [96-99]. Table 2 shows a summary of KG construction approaches 
for diseases and disorders. 
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Table 2: A Summary of KG construction approaches for diseases and disorders. 

Ref. KG Specific 
Functionality 

Knowledge Extraction 
Techniques 

Type of 
KB 

 

KG Resource(s) KG Stats Evaluation 
Measure(s) 

Shortcoming(s) 

Entity-
level 

Relation-
Level 

[15] Cardiovascular 
domain 

LSTM-CR pattern-
based and 
supervised 
learning 
methods 

Hybrid UMLS, EMRs, 
medical standards, 
and expert 
knowledge. 

#n: 
8,293,284  
#e: 
32,256,360 

The evaluation 
is conducted in 
the embedded 
modules 

• The overall framework 
requires a detailed case study to 
evaluate the effectiveness of 
integrating the proposed 
modules.  

[45] Subarachnoid 
hemorrhage 

Semantic 
analysis 
(Ontologies: 
LBO, IAO, 
etc.,) 

Automatic 
(Rule-based) 

Shema-
based 

clinical notes and 
brain angiograms 

N/A P, R, F1, and AC • Limited discussion on the KG 
statistics  
• The overall framework 
requires a detailed case study to 
evaluate the effectiveness of 
integrating the proposed 
modules.  

[76] Hepatocellular 
carcinoma 

SemRep20, rule-based 
method,and BioIE(with Att-
BiLSTM-CRF) 

Schema-
based 

PubMed, 
SemMedDB, 
UpToDate, and 
Clinical Trials21 

#n: 5,028 
#e: 13,296 

Accuracy • The KG was not properly 
evaluated on real-life case study 
that addresses hepatocellular 
carcinoma. 
• There has been no detailed 
discussion on the mechanism 
followed to address the 
presented disagreements.  

[80] Stroke DNorm22, 
tmChem23, 
GNormPlus24

, PWTEES25 

NLTK, 
PKDE4J, and 
Bio-BERT 

Shema-
free 

CID26, TCMID27,  
EU-ADR28, ETCM29 

#n: 46 k 
#e: 157 k 

P, R, F1 • The constructed KG is limited 
to Chinese context and hard to 
replicate and build a more 
comprehensive map of medical 
knowledge.  

[77] Diagnosis and 
treatment of viral 
hepatitis B 

N/A N/A Schema-
based 

EMR (8544 
patients in China) 

#n: 8,563 
#e: 96,896 

N/A • No proper evaluation was 
conducted. 
• No discussion on mechanism 
followed to construct the KG  

[83] Coronavirus 
pneumonia-related 
diseases, 

CRF Bio-BERT Shema-
free 

COVID-19 
scientific 
literatures 

#n: 10,993 
#e: 
1,204,234 

Specificity, P, R, 
F1, and AC 

• The entity and relation 
extraction datasets are provided 
with lack of discussion on the 
mechanism followed to conduct 
the experiments on these 
datasets. 

 
20 https://semrep.nlm.nih.gov/ 
21 https://clinicaltrials.gov/ 
22 https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/DNorm/ 
23 https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/tmchem/ 
24 https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/gnormplus/ 
25 https://github.com/chengkun-wu/PWTEES 
26 http://www.cbs.dtu.dk/services/  
27 http://bidd.group/TCMID/ 
28 https://biosemantics.erasmusmc.nl/index.php/resources/euadr-corpus 
29 http://www.tcmip.cn/ETCM/ 
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[78] Identifying disease-
gene associations 

N/A N/A Shema-
free 

CTD, BioGrid30, 
MalaCards31 

#n: 103,625 
#e: 
3,273,215 

N/A • No discussion on the 
mechanism followed to extract 
entities and relationships. 
• The construction of the KG 
itself is not evaluated 

[79] Myopia 
Prevention 

Automatic using python 
script 

Schema-
based 

Baidu 
Encyclopedia, 
Chinese Wikipedia, 
and professional 
websites 

#n: N/A 
#e: N/A 

NA • KG is not described in terms of 
mechanisms used to extract 
entities and relationships. 
• No proper evaluation is 
undertaken. 

[93] Depression disorder XMedlan, Semantic Queries 
with regular expressions, 

Hybrid PubMed, Clinical 
Trials5 DrugBank32, 
DrugBook, 
Wikipedia, SIDER33, 
and  
UMLS 

#e: 
8,892,722 

Use cases  • Lack of proper evaluation, 
• insufficient use of other 
important medical repositories, 
• lack of discussion on both the 
methodology used for 
knowledge integration and KG 
statistics.  

[91] Autism spectrum 
disorder  

MinHash 
lookup/UML
S 

Skip-gram  
and 
kmeans++ 

Schema-
free  

PubMed34 (autism 
spectrum disorder-
related article 
abstracts) 

#n: 6827 
#e: 16,192 

Hit@k • Extracted relations are coarse-
grained.  
• Difficult to distinguish 
semantically related relations, 
• Insufficient overall evaluation 
to the model 

[94] Depression SemRep35,OpenIE and rule-
based method 

Schema-
based  

SemMedDB, 
PubMed 

#n: 3,055 
#e: 30 

Jaccard • Poor data quality 
• The utility of KG was not well-
proven  

[95] Metabolism-
depression 
associations  

Manual curation and 
extraction by domain expert 
(traditional logical rules) 

Schema-
based  

KEGG and scientific 
literature 

#n: 
3,724,526 
#e: 
5,725,821 

Case study • Ineffective inferences due to 
the incorporated traditional 
logical rules. 
• Automatic extraction methods 
are required to enrich the 
functional diversity of the 
depression KG. 

5.3 Biomedicine  
Generic biomedicine: KG's have been used with success for modelling both biological systems and pathologies, 
providing the means to understand this interplay between them. Several studies reported significant advances in 
this direction while incorporating KG technology. PharmKG [100] is a comprehensive KG built upon integrating six 
interrelated knowledge bases, with nodes representing genes, chemical compounds, and diseases. Entities of 
PharmKG are labeled with domain-specific information, keeping semantic and biomedical characteristics of the 
data. Percha et al. [101] compiled a basic KG known as the Global Network of Biomedical Relationships (GNBR) from 
biomedical literature. The process of populating GNBR with data was performed using PubTato (named entity 
annotator) tool, as well as Ensemble Biclustering for Classification (EBC) algorithm to annotate entities captured 
from Medline abstract. Wood et al. [102] developed RTX-KG2, an integrated KG that includes biomedical data 
captured from 70 biomedical knowledge bases. The aim of RTX-KG2 is to offer an open-source KG that can be used 
as a biomedical translational reasoning engine. Zhang et al. [103] reported the extraction of biomedical causality 

 
30 https://downloads.thebiogrid.org/BioGRID 
31 https://malacards.org/ 
32 https://www.drugbank.ca/ 
33 http://sideeffects.embl.de/ 
34 https://pubmed.ncbi.nlm.nih.gov/ 
35 https://lhncbc.nlm.nih.gov/ii/tools/SemRep_SemMedDB_SKR/SemRep.html 
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from the scientific literature. In their work, the authors constructed a biomedical knowledge graph to discover causal 
relationships in the biomedicine field. Authors of [82] developed a marine Chinese medicine KG using a top-down 
approach that takes guidance from a domain ontology. Developing an integrated KG to benefit the biomedical 
domain has also been discussed in [104]. The authors presented BioKG, a KG of drug-drug and drug-protein 
interactions data collected and compiled using modular software, namely BioDBLinker. This KG contains managed 
entities and relationships captured from at least five biomedical databases, such as UniProt, REACTOME, KEGG, 
DrugBank, SIDER, and Human Protein Atlas (HPA).  He et al. [105] designed a KG for intestinal cells. First, the authors 
built an ontology as a conceptual model followed by extracting facts from the academic literature. Despite the 
problems with mechanisms used to construct the actual KG, the work presents an important attempt toward 
constructing KGs specifically to study the intestinal field, facilitating much easier observation of the processes of 
intestinal cytokines via various signalling channels. Constructing KGs to benefit generic biomedical domain was the 
subject of [106-111]. 

Microbiology: KGs offer an excellent mechanism to conceptualise our understanding of microscopic organisms 
and their ecological traits. To this end, Joachimiak et al. [112] developed KG-Microbe, an integrated KG that contains 
prokaryotic data for phenotypic traits as well as supporting use cases in microbiology, biomedicine, and 
environmental science. Liu et al. [113] conceptualised gut microbiota using a semantically enriched KG, namely 
MiKG. MiKG integrates facts obtained from medical literature as well as other medical knowledge bases, thereby 
offering an interface for detection of possible connections between gut microbiota, neurotransmitters, and mental 
disorders. Authors of [114] developed a Microbe-Disease Knowledge Graph (MDKG) through an explorative study, 
thus identifying the associations between bacteria and diseases. MDKG is populated with entities and relations 
captured from textual content of Wikipedia as well as other semantic knowledge bases. Modelling Coronavirus 
using KG technology has recently attracted a lot of attention in the research community. For example, Zhang et al. 
[115] built a coronavirus KG by integrating entities captured from Analytical Graph and CORD-19 databases. The 
aim of the proposed KG is to provide a tool for the exploration of coronavirus on the entity level. Another attempt 
to help the biomedical research community comprehend the coronavirus using KGs is offered by Chen et al. [116]. 
The authors constructed a designated KG to discover any associated diseases, potentially effective drugs or 
treatments, and relevant genes and mutations. Using KG technology, modelling Coronavirus relevant information 
was also implemented and discussed in [57, 117, 118]. Further uses of KGs in microbiology are studied in [119]. 
Table 3 depicts a summary of KG construction approaches for the biomedical domain. 

Table 3: A summary of KG construction approaches for the biomedical domain. 

Ref. KG Specific 
Functionality 

Knowledge Extraction 
Techniques 

Type of 
KB 

 

KG Resource(s) KG Stats Evaluation 
Measure(s) 

Shortcoming(s) 

Entity-level Relation-
Level 

    

[100] Generic biomedicine  Manual integration and 
mapping of entities and 
relationships 

Schema- 
base 

OMIM, DrugBank, 
PharmGKB, 
Therapeutic Target 
Database], SIDER, 
and HumanNet 

#n: 7,603 
#e: 500,958 

Hits@N and 
Downstream 
tasks 

• The quality and integrity of the 
metadata cannot be fully 
assured. 

• The final version of the 
constructed graph does not 
have large-scale of entities 
compared with state-of-the-art 
KGs. 
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• No discussion is provided on 
the adopted ontology. 

[101] Generic biomedicine PubTator36 
and manual 
annotation 
(EBC) 

Stanford 
Dependency 
Parser37 

Schema-
free 

Biomedical 
literature (Medline 
abstracts38) 

#n: N/A 
#e: 
2,236,307 

Benchmark 
comparison 

• Heavily dependent on the co-
occurrence of paths to map 
scarcer paths to themes, 
• Lack of handling complex 
relations  
• There is a potential of a parser 
error,  

[102] Translational 
biomedicine 

Manually and automatically 
using Snakemake39 

Schema- 
base 

70 knowledge 
sources including 
SemMedDB, 
ChEMBL, etc. 

#n: 6.4 m 
#e: 39.3 m 

Benchmark 
comparison 

• The automation process to 
construct the KG was not detailed.  
• The comparison with other KGs 
is not well discussed nor 
formulated.  

[103] Biomedical Causal 
Discovery  

Manual and rule-based 
approach 

Schema-
free 

PubMed #n: N/A 
#e: N/A 

Accuracy  The paper failed to extract implicit 
causality, 
The process to identify concepts 
and relationships between 
concepts is not detailed. 

[82] Marine Chinese 
medicine 

Manual mapping between the 
ontology and the KG 

Schema- 
base 

Medical literature #n: N/A 
#e: N/A 

NA • The paper inadequately 
described the construction and 
evaluation of the proposed KG. 

[104] Generic biomedicine BioDBLinker Automatic 
mapping  

Schema- 
free 

UniProt40, 
REACTOME41, 
KEGG42,DrugBank, 
SIDER, and d 
Human Protein 
Atlas (HPA)43.  

#n: N/A 
#e: N/A 

Benchmark 
comparison 

• Suffers from sparsity of data, 
• Train-test data leakage in case 
used without careful review 

[105] Intestinal cells Manually based on the 
conceptual model 

Schema- 
base 

PubMed #n: 2443 
#e: 160253 

Case study • Poor entity and relation 
extraction approaches.  
• Data source is static and limited 

to medical literature, yet 
medical facts of intestinal cells 
can be obtained from future 
experiments. 

[112] Microbiology NER and NLP techniques  Schema- 
base 

KG Hub – 
COVID1944 

#n: 266,000 
#e: 432,000 

N/A • Poor discussion on 
mechanisms followed to 
construct and validate the KG 

[113] Gut microbiota Manual annotation and 
mapping 

Schema- 
base 

Google Scholar and 
PubMed, UMLS, 
MeSH, SNOMED 
CT, and KEGG 

#f: 
31,268,998  

Case studies • Poor extraction of entities and 
relations. 
• The correctness and 
completeness of extracted 
relations limit the semantic 
search's precision and reliability.  

 
36 https://www.ncbi.nlm.nih.gov/research/pubtator/ 
37 https://nlp.stanford.edu/software/lex-parser.shtml 
38 https://www.nlm.nih.gov/bsd/pmresources.html 
39 https://snakemake.readthedocs.io/en/stable/ 
40 https://www.uniprot.org/ 
41 https://reactome.org/ 
42 https://www.genome.jp/kegg/ 
43 https://www.proteinatlas.org/ 
44 https://github.com/Knowledge-Graph-Hub/kg-covid-19 
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[114] Microbe-Disease 
Associations 

Kindred entity and relation 
classifier45 

Schema- 
free 

Wikidata, UMLS, 
NCBI  

#n: 9,832 
#e: 21,905 

Hits@N • KG can be expanded by means 
of a bacterial attribute mining 
tool, 

• Lacks a discussion on 
interactions between bacteria 
and antibiotics or viruses. 

[115] Coronavirus Manual extraction and 
mapping 

Schema- 
free 

Analytical Graph 
(AG) and CORD-
1946 

#n: 588,820 
#e: N/A 

Case study • Limited data sources, 
• Static KG 

[116] Coronavirus BioBERT Schema- 
free 

PubMed and 
CORD-19 

#n: N/A 
#e: N/A 

P, R, and F1-
score 

• KG can be expanded to other 
bio-medical datasets. 
• Further biomedical NLP models 
for NER, e.g., blueBERT can be 
attempted to verify the validy of 
the extracted knowledge.  

5.4 Miscellaneous Healthcare 
Constructing KGs from EMRs: The ongoing efforts to leverage the proliferation of EMRs for multiple medical 
applications are well-documented in the scientific literature. Extracting valuable knowledge from such data silos has 
been made easier by KG technology. In this context, several studies attempted to construct medical KGs that can 
improve specific areas, for example, clinical decision support systems. One such attempt was undertaken by Li et al. 
[120], who followed a systematic approach consisting of eight steps to build a medical KG from EMRs obtained 
during the patients' visits. The authors constructed a quadruplet-based medical KG incorporating an additional item 
(properties) which includes a set of characteristics to rank the embedded entities. The main objective of this study 
is to ensure the robustness of facts in the KG related to the medical domain. Evaluating the robustness of a 
constructed KG in healthcare is of utmost significance to ensure the quality of the inferred knowledge. In this 
context, [121] presented a methodology to measure and evaluate the robustness of knowledge relating to diseases 
and symptoms, with data captured from existing health knowledge graphs as well as records of patient visits to the 
Beth Israel Deaconess Medical Center (BIDMC). Postiglione et al. [122] proposed an advanced entity recognition 
approach named PETER (Pattern-Exploiting Training for Named Entity Recognition), that integrates Pattern-
Exploiting Training (PET) [123] to build an Italian-language KG for healthcare. EMRs represent a fertile source of 
information for healthcare KGs, hence their use for construction of KGs is becoming quite common, as exemplified 
in [124] and [125]. 

Query Answering (QA) and Question and Answer (Q&A): Incorporating health KGs into a QA system was 
discussed by Sahu et al. [126]. The authors proposed a system that can be used to search for various health-based 
KGs and obtain a set of healthcare-related response sub-graphs. The possibility of using medical KG's to benefit 
QA applications was also discussed in [127]. Zhao et al. [128] made use of EMRs obtained from hospital patient 
records in Shanghai to build a medical knowledge graph based on the BILSTMCRF model. Here, a KG is used as a 
part of a QA system to provide support for establishing medical diagnosis. Xie et al. [129] attempted to create a KG 
for Traditional Chinese Medicine (TCM), yet the KG they ended up with is very limited in terms of entities and 
relationship; thus, the applicability and utility of the graph is questionable. Another Chinese medical KG was 
proposed by [130]. The authors developed this KG from various structured, semi-structured, and unstructured 
resources and built a QA system that was not adequately validated due to irrelevant results. Also, Huang et al. [131] 

 
45 https://kindred.stanford.edu/ 
46 https://www.kaggle.com/datasets/allen-institute-for-ai/CORD-19-research-challenge 
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designed a QA system based on a constructed KG, with the information in the graph used to identify the question's 
intention. Deploying QA and Q&A systems based on medical and healthcare KGs is also a relevant topic in [132]. 

Healthcare Management: In the literature, it has been frequently suggested that a KG can be built to help with 
health management and to better address the most critical health-related issues and chronic disorders [133-136]. 
For example, Huang et al. [133], proposed a KG building approach that aids users who are seeking information 
about a healthy diet. Domain ontology was presented by the authors as the basic structure of a KG containing 
information about diet. Conditional Random Fields (CRF), Support Vector Machine (SVM), and Decision Tree (DT) 
methods were used to enrich the KG with entities harvested from a variety of healthcare websites. Haussmann et 
al. [134] developed an integrated KG (FoodKG) that brings together information about healthy food, recipes, and 
nutritional value. The authors used the RDF Nano publication to establish the reliability of their findings [137]. Chi 
et al. [135] developed an inclusive healthy diet KG by following a similar study path. In this case, the KG was 
comprised of five essential concepts: the meal, the dish, the nutritional aspect, the symptom, and the crowd. The 
proposed model was able to collect and import entities from a range of web resources and deployed multiple NLP 
and machine learning methods with a semi-automated extraction strategy. In addition, food domain-specific KGs 
were modelled in [138-140]. Another example of the use of KG-based technology to address difficulties in 
healthcare systems was discussed in [141-143]. 

Miscellaneous KGs: In healthcare, addressing the timing factor in KG creation is critical. Ma et al. [144] developed 
a temporal KG that is useful for studying episodic memory in cognitive tasks. The Integrated Conflict Early Warning 
System (ICEWS) dataset and the Global Database of Events, Language, and Tone were used to create this temporal 
KG (GDELT). Their work was unique in that it involved four substantial static KGs embedding data to four-
dimensional temporal/episodic KGs, which set them apart from other efforts in this direction. Two new RESCAL 
generalisations were also proposed and considered. Another important effort that integrated plausible reasoning 
with fine-grained biomedical ontologies to tackle the data incompleteness problem was undertaken by 
Mohammadhassanzadeh et al. [42]. The authors proposed a Semantics-based Data analytics (SeDan) framework 
that performs an exploratory analysis of the KG using the OWL extension and query rewriting algorithm. The 
framework incorporates data from various knowledge bases, including the DrugBank, Disease Ontology, and the 
large-scale semantic MEDLINE database (SemMedDB). Rastogi et al. [145] framed their personal health KG as a 
combination of context, personalization, and integration with other knowledge bases. Their study indicated that the 
literature on personalised health-related KGs is incomplete and lacks a unified standard representation to 
adequately describe the designated domain. To provide an overview of effective medications, side effects, and 
target populations relevant to COVID-19, the authors of [146] proposed a KG-based framework to support COVID-
19 clinical research. This framework benefited from Stanford's Stanza toolbox to extract KG's entities and 
relationships that can be fed into a visualisation module for querying information. The application of KGs in 
healthcare and medical domains was documented in other relevant tasks including epidemic contact tracing [147], 
food waste detection [109], drug similarity [148], clinical decision support systems [120], and medical recommender 
systems [149, 150]. Table 4 shows a summary of KG construction approaches used in various miscellaneous 
healthcare applications.  
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Table 4: A summary of KG construction approaches for miscellaneous healthcare 

Ref. KG Specific 
Functionality 

Knowledge Extraction 
Techniques 

Type of 
KB 

 

KG Resource(s) KG Stats Evaluation 
Measure(s) 

Shortcoming(s) 

Entity-
level 

Relation-
Level 

[120] A generic 
medical KG of 
patient visits. 

BMM, 
BiLSTM-CRF 
and pattern 
recognizer 

Nine 
predefined 
relations   

Schema-
free 

Southwest Hospital in 
China: 16,217,270 de-
identified visits of 
3,767,198 patients 

#n: 22,508 
#e: 579,094 
 

R, P, F1, and 
NDCG 

• KG embedding was designed 
and limited to Bi-LTSM without 
considering other state-of-the-
art techniques. 
• The evaluation was mainly 
conducted on the embedded 
components.  
• Besides the preliminary 
discussion on the applications, 
there is a lack of an overall 
evaluation of the KG.  

[121] KG of online EMR 
and emergency 
department 

N/A N/A Schema-
free 

BIDMC dataset and EMRs 
from an emergency 
department  

#n: N/A 
#e: N/A 

F1 and the area 
under the 
precision-
recall curve 

• The provided statistics are on 
the sources of the KG; the stats 
on the KG in terms of entities and 
edges are missing.  
• There is no discussion on the 
mechanism followed to construct 
the KG in terms of entities and 
relations.  

[133] Smart Healthcare 
Management 

CRF Manual and 
classification-
based 
algorithms 

Schema-
based 

Chinese healthcare 
websites4748,49 

#n: 1,169 
#e: 9,707 

R, P, and F1 • The resultant KG can be 
consolidated with information 
about disease and drugs and link 
them with symptom entities.  

[128] Q&A BILSTM-CRF Manually  Schema-
free 

EMRs from a hospital in 
Shanghai 

#n: 44,111 
#e: 203,308 

R, F1 and 
Accuracy 

• Lack of comparative study of 
the model. 
• Limited practicability of the 
system 
• Limited size and pretreatment 
of the corpus  

[129] Q&A BiLSTM + CRF Schema-
free 

National Service Platform 
for Famous Old Chinese 
Medicine Experience50 

#n: N/A 
#e: N/A 

Case study and 
Hitration 

• Poor KG with a minimal 
number of entities and 
relationships, 

[42] Q&A Plausible reasoning Schema-
free 

BioASQ, DrugBank, 
Disease Ontology, and 
SemMedDB 

#n: N/A 
#e: N/A 

Domain 
expert's 
verification 

• Insufficient evaluation, 
• evaluating the performance of 
query rewriting algorithm does 
not exist 

[130] Q&A Automatic mapping  Schema-
free 

Chinese medical websites #n: 18,687 
#e: 88,858 

Case study • Poor discussion on extraction 
of entities and relationships. 
• The QA system does not 
exhibit utility due to inapplicable 
results.  

[131] Q&A Jieba51 Automatic 
mapping 

Schema-
free 

A medical company 
(YiFeng Pharmacy52) 

#n: 34,788 
#e: 601,475 

Training and 
decision 

• The construction of KG is not 
validated. 

 
47 https://www.zhys.com/ 
48 http://app.huofar.com/grz/ 
49 http://www.cf555.com/ 
50 https://www.gjmlzy.com/ 
51 https://pypi.org/project/jieba/ 
52 http://www.yfdyf.cn/ 
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accuracy, cost, 
and time 
 

• The system can answer one 
intention per question and 
cannot thus answer questions 
with multi-intensions. 

[146] COVID-19 
Clinical Research 

Stanza's 
NER53 

Stanza's Bi-
LSTM 

Schema-
free 

Artificial Intelligence in 
Medicine 

#n: N/A 
#e: N/A 

Baseline 
comparison  

• Lack of statistics on entities 
and relationships, 
• Poor KG validation method 

5.5 Summary 
This paper examines the most recent works related to KG construction methodologies in various healthcare 
domains, such as drugs (and their applications), diseases and disorders, biomedicine, etc. A closer look into these 
important domains reveals crucial research areas that benefit substantially from KG technology. This research 
demonstrates the popularity of using KGs to solve real-world healthcare-related problems and shows how KGs have 
proven to be an effective overall solution for reducing complexity, ensuring flexibility, and establishing a common-
ground architecture where data from various sources can be readily incorporated. It is generally agreed that KG 
technology allows for semantic integration of data acquired from many sources, which may exist in different 
formats, and can then be fed into a single, coherent framework to be formally used to conceptualise the designated 
domain.  

6. Findings, open issues, and opportunities  
Despite the popularity of KG technology in the healthcare domain, this study reveals certain limitations that open 
new directions for future research.    

- KG data sources: various previous studies have concentrated on knowledge curation and facts captured 
from a limited number of data sources. For example, certain KGs were constructed using only biomedical 
scientific publications (e.g. PubMed and SemMedDB) [94, 103, 105]. The extracted knowledge using such 
data sources lacks completeness, leading to poor descriptiveness of the entities and potentially flawed 
relationships within a particular healthcare domain. This also limits the capacity of the graph to deliver useful 
facts or rules to power data-driven methods that can be used for making healthcare decisions [45]. To 
consolidate a healthcare KG and establish a cohesive viewpoint of the domain, alternative sources need to 
be incorporated and integrated including EMRs, PMRs, clinical trials, patient records, epidemiological 
surveillance, sensor data, disease registries, wearable devices, health workforce data, census data, implanted 
equipment, pill cameras, and all other relevant sources. However, full integration of such heterogeneous 
data sources can be a complicated and time-consuming task, especially when working with large-scale 
datasets where traditional data assimilation and aggregation techniques are not applicable. Therefore, there 
is still room for research to address the big data problem in healthcare KGs by developing advanced and 
sophisticated data collection and aggregation techniques.  
 

- Healthcare knowledge interoperability: Linked Open Data (LOD) and Semantic Web technologies have 
made it possible to improve a variety of domain-specific applications [14, 151-153]. KGs represent an 
expansion of these efforts and are frequently connected with LOD initiatives because they improve data 
semantics by enhancing the conceptual representations of entities [154]. As a result, appropriate interlinking 

 
53 https://github.com/stanfordnlp/stanza 
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of entities gathered from different data sources facilitates information interoperability, resulting in 
multimodal KGs. However, some of the methodologies investigated in this study revealed difficulties in 
attaining  the appropriate level of knowledge expandability and interoperability. In particular, semantic 
expansion strategies were underutilised, and their ability to take advantage of freely accessible vocabulary 
and semantic resources is mostly ignored. The expansion of healthcare knowledge with health records 
collected from different channels, such as hospital admissions, family physician visits, prescription drugs, 
pharmacy requests, laboratory blood analyses, and death certificates establishes a comprehensive individual 
health (or disease) profile [155]. This holistic view carries enormous implications for several research areas, 
such as epidemiology and precision medicine. Basic structure of KGs facilitates better data integration, 
unification, and information sharing. Semantic expansion adds context to the collected facts in the KGs and 
enhances the quality of the aggregated knowledge, eliminates redundant records, and detects missing 
entities. Based on success of existing healthcare semantic expansion initiatives such as the Centre for Health 
Record Linkage (CHeReL) in Australia [156] and Rochester Epidemiology Project in USA [157], more research 
in this direction should be conducted. 
 

- KG construction mechanisms: The construction of the KG comprises several activities which might vary 
depending on the type of knowledge base (schema-based, schema-free, or hybrid), knowledge resources 
and their data types (structured or unstructured), knowledge extraction techniques (entity-level and relation-
level), etc. Several of the examined studies failed to adequately disclose the internal mechanisms they used 
to build and implement the KGs. A shortcoming that was commonly observed was poor and/or limited 
discussion to explain either the overall construction methodology [48, 55, 66] or the essential construction 
tasks such as the ontology design [46, 100], entity and/or relation extraction [78, 83], and knowledge 
integration [47, 93]. Furthermore, many of the KGs described in those papers are not publicly available for 
inspection. These drawbacks detract from knowledge sharing, translation, and reusing, and make the 
replication of the proposed approaches difficult. This is particularly problematic in the healthcare domain 
where knowledge replicability can assist in consolidating the facts about certain scientific tests and medical 
experiments [158]. Therefore, future studies must ensure that all steps of KG construction are well-explained, 
and the resultant KG must be publically shared with the community to reinforce FAIR principles (Findable, 
Accessible, Interoperable, Reusable)54. 
 

- KG evaluation: Despite the continuous propagation of KGs for the healthcare domain and its sub-domains, 
this survey reports evident problems with KG evaluation and/or case study implementation. Numerous KGs 
were constructed with no proper concern for evaluation of their quality [77-79, 82]. Additionally, there is 
only a limited utility in applying the constructed KGs to real-life applications. Instead of practical 
applications, the proposed KGs mainly attempted to provide an underlying conceptual structure of the 
domain utilising domain-specific entities, concepts, relationships, and events. For example, the authors of 
[76] attempted to build a KG for hepatocellular carcinoma with no verified utility in addressing the 
designated disease. Designing and implementing actionable healthcare analytics must be the essence of the 

 
54 https://www.go-fair.org/fair-principles/ 
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KG construction philosophy, where relevant facts are obtained with the objective to conceptualise the 
correct context and address a domain problem, thereby achieving the hoped-for value. Future works must 
ensure that KGs are assessed using one or more appropriate evaluation and refinement methodologies such 
as (i) silver and gold standards [159]; (ii) theoretically proven computational measures such as precision and 
recall; and (iii) domain experts. In addition, the constructed KG must prove its utility and verify its applicability 
in real-life scenarios and for the execution of downstream tasks.   
 

- Data Quality and PrivacyApplying healthcare KGs to downstream tasks such as drug discovery, clinical 
decision support, and medical treatment relies profoundly on the high quality of the embedded facts. 
Although some of the examined works constructed their KGs using structural, verified and curated data 
sources [42, 94, 104], other KGs imported data from unstructured sources (such as scientific medical 
literature or social media), with little regard for applying data quality measures before incorporating the 
extracted information [56, 105]. Freely available texts such as scientific medical literature commonly 
comprise ambiguous data, abbreviations, and noisy data that includes words and phrases irrelevant to the 
designated context. EMRs also comprise a vital source of embedded clinical data that can be either 
mistakenly neglected or hard to collect due to confidentiality constraints. These challenges raise concerns 
about the quality and reliability of KGs generated from such data sources. Therefore, high-quality healthcare 
KGs should be constructed by selecting high-quality data sources and developing quality measurement 
techniques. Also, advanced NLP and deep learning algorithms that can efficiently and automatically identify 
high-quality entities and relations should be implemented wherever possible. Those tools should be used 
to improve data privacy, integrity, and security, preventing malicious activities that attempt to abuse 
patients' sensitive medical information.  
 

- Recentness: Most of the examined studies did not consider the temporal factor; their KGs are static in nature 
and often neglect the validity period of incorporated triples. A healthcare KG built based on just one 
snapshot of the knowledge landscape might not be a sustainable depiction of the designated domain, 
particularly with the emergence of wearable medical devices, sensors, health monitoring systems, and 
mobile applications [160] which make the construction of dynamic and frequently updated KGs a necessity. 
Ignoring the dynamic nature of healthcare knowledge degrades the quality and accuracy of facts embedded 
in KGs, consequently leading to poor data analytics and decision making.   
 

- Healthcare KG reasoning: Reasoning of the KG aims to infer new facts and make new conclusions based 
on the existing data. KG reasoning allows for deriving new insights and enriches KGs with new relations. 
Several techniques have been proposed in the literature for KG reasoning, including ontology reasoning, 
logic rules, and random walk algorithm [161]. Recently, KG embedding approaches attracted a lot of 
attention in the research community due to their capacity to provide generalizations and infer new facts. KG 
embedding techniques aim to transform the KG into semantically-continuous low-dimensional space. The 
embedded KG can be then used for several downstream tasks including link prediction, knowledge 
discovery, etc. [162]. This study reveals a relative lack of successful KG embedding strategies in the 
investigated papers.  
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7. Conclusion  
The vast volume of healthcare data that is collected in a variety of formats and pertains to a wide range of subject 
matters presents a critical challenge for analysts. Knowledge Graphs (KGs) offer an effective answer to this challenge 
and open new possibilities for machines to understand meanings, closing the semantic gap between them and 
people. As a result, domain-specific knowledge graphs have been developed and applied to various real-world 
problems. Healthcare industry has greatly benefited from this technology, with numerous KGs created specifically 
to address different healthcare issues. However, the deficiencies and limitations of the current KG construction 
techniques stand in the way of obtaining the hoped-for value from this technology.  

This paper offers a bird's eye view of the healthcare KG domain and tries to define a relevant construction paradigm. 
A critical review of the current construction approaches is conducted considering the methods used for knowledge 
extraction, types of knowledge bases and sources, and the adopted evaluation metrics. Finally, in conjunction with 
a summary of limitations and deficiencies, it provides pointers for potential future research that we hope will inspire 
scholars in this field.   
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